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Automotive Market

� Increasing number of electronics
– $240 in a vehicle by 2001
– $4.9 billion for DSP, microcontrollers, microprocessors

�Fragmented market (4 bit to 128 bits)
– 8-16-32 bits for control
– 32 bits+ for infotainment
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Two Worlds

� Infotainment (Navigation, Internet, Telecom).
– e.g. AMIC initiative (www.ami-c.com) on Java-based

technology
�Control bus (powertrain, ABS, engine control ...)

– e.g. OSEK/VDX initiative (www.osek-vdx.org) on RTOS
and multiplexing

– e.g. LIN Local Interconnect Network announcement
• Audi, BMW, DaimlerChrysler, Volvo, VW)
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Automotive Industry

�More global functions
– Multiplexing (CAN)
– Interconnectivity with vehicles

�Different Car manufacturer/OEM relationship
– Car manufacturer define overall system and retain know-

how
• Car manufacturer provide application
• OEM provide incomplete Electronic Control Units (ECU)
• OEM provide software components
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Demands on Technology and Tools

�Open systems (e.g. OSEK/VDX, AMIC)
�Advanced methods and tools (e.g. OMT, UML)
�Support for dependability in some cases (e.g. TTP)
�Hardware independence

– e.g. A provides application, B and C provide ECU
hardware

�Need for single chip approach
– 8-16-32 bits
– Small memory footprints (128 Kbytes ROM 10Kbyte

RAM).
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AJACS

�2-year Initiative
�Consortium

– Trialog
– PSA (Peugeot-Citroën)
– Centro Riserche Fiat
– Mecel (technology centre of Delphi)
– University of Karslruhe
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AJACS Objectives

�Specification, Development, Demonstration of
– an open technology
– based on Java
– for deeply embedded automotive control systems

� Industrial viewpoint
– Benefit from object orientation in terms of structuring,

reusability, dependability
– WORA attributes to some extent, robustness attributes
– Support the same kind of real-time constraints which non

Java based ECUs are managing today
– Single chip approach - Small footprint
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Technical Requirements

�Mechanisms and APIs must
– support existing standards in the automotive industry

(OSEK/VDX)
– support legacy C code
– support calibration mechanisms
– support distribution mechanisms

�Run-time must have right level of performance.
Native code

� Issues related to Java
– e.g. Memory management, synchronisation, interrupt, ..
– static versus dynamic
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Static VS Dynamic

�Static systems
– static predetermined configuration (e.g. task 3)

�… are easier for determinism
�… allows for small footprints
�Example of Threads

– can only be created at initialization time?
– Association between Java entity and underlying static

entity
�Example of Memory management

– is GC needed?
– immortal memory? Scoped memory?
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OSEK/VDX

�Standard architecture for distributed control units
in vehicles

�Specifies abstract APIs
– real-time operating system OS
– communication COM
– network management NM
– system generation OIL

�Static system
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OSEK/OS supports for

�Tasks
– Basic tasks - no waiting
– Extended tasks

�Resource
– Priority ceiling protocol
– No waiting

�Events
�Alarms and counters
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OIL (OSEK Implementation Language)

�Entities are described in OIL (e.g. task)
�Run-time entity descriptors (e.g. task descriptor)

contains (typically)
– ROM part
– RAM part

�OIL builder generates configuration info
– e.g. constants in  ROM
– e.g. initialization code ...
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Issues

�Combine OSEK/VDX execution model with Java
execution model

�Combine OIL with Java
– Entities described in OIL
– Builder generate structure
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Standardisation

�Carried out within the J consortium (www.j-
consortium.org)

�within the HIP (High Integrity Profile) working
group

�defines a specific profile, the HIPA Specification
(High Integrity Profile for Automotive applications)
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A HIPA Compliant Implementation
�Application files
�Configuration files

– counterpart of OIL file
�… create Environment

files
�… generate class files
�… generate binary

image
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A HIPA Compliant Implementation

�API for OSEK
– configuration API
– task management
– interrupt management
– event management
– synchronisation API

�Conformance
– run-time checking as an option
– OSEK/VDX classes of conformity

• BCC1, BCC2, ECC1, ECC2
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Native Code Approach vs Interpretation

�Standard approach : Interpretation of Byte-Code
– high-level Byte-Code pre-compiled from Java sources
– virtual machine / interpreter runs the program
– whole (virtual) state space available to

inspection/debugging
– exchangeable code pieces (dynamic class loading)

�Partial Compilation: JIT Compiler
– Parts (methods/expressions) are compiled to native code
– Compiler included in Virtual Machine

�Full Compilation: Offline Compiler
– Full native binary
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Native Code Approach vs Interpretation
� Giving up interpretation we lose:

– Dynamic overloading of classes
– Compile once, run everywhere
– Runtime verifier

� We gain:
– Improved execution speed by orders
– Better static memory layout, less garbage collection

� We keep:
– Replacement of software modules
– Inspection/Debugging interface
– Write once, compile to many platforms
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Native Code VS Interpretation
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AJACS Native Code Approach
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AJACS Native Code Approach

�Lowering Transformator
– high level Java construct transformed into low level

intermediate form
– … called SSA (Single Static Assigment)

�Optimizer
– works on intermediate form
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Optimisation Technology

�Object orientation
– expensive polymorphic calls.
– many calls to procedures (e.g. 5 times more).
– frequent accesses to heap variables (e.g. 60% more memory

access)
– lots of heap objects allocation

�AJACS will use Explicit Dependency Graphs (EDG)
– optimization = rewriting of graph

�and BEG (Back End Generator) tool (U.Karlsruhe)
– Bottom-up-rewrite/bottom-up-pattern-match
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AJACS time table

�Draft spec March 2001
� Implementation August 2001


