
Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS : Applying Java to Automotive
Control Systems

Authors :
Jérôme Charousset, Antonio Kung. www.trialog.com

Thilo Gaul /IPD/U.Karlsruhe. i44www.info.uni-karlsruhe.de
Presented by Antonio Kung

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Content

�Context of Automotive Electronics
�AJACS objectives
�AJACS technical requirements and issues
�J consortium HIPA specification
�Native code approach
�Timetable

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Automotive Market

� Increasing number of electronics
– $240 in a vehicle by 2001
– $4.9 billion for DSP, microcontrollers, microprocessors

�Fragmented market (4 bit to 128 bits)
– 8-16-32 bits for control
– 32 bits+ for infotainment

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Two Worlds

� Infotainment (Navigation, Internet, Telecom).
– e.g. AMIC initiative (www.ami-c.com) on Java-based

technology
�Control bus (powertrain, ABS, engine control ...)

– e.g. OSEK/VDX initiative (www.osek-vdx.org) on RTOS
and multiplexing

– e.g. LIN Local Interconnect Network announcement
• Audi, BMW, DaimlerChrysler, Volvo, VW)

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Automotive Industry

�More global functions
– Multiplexing (CAN)
– Interconnectivity with vehicles

�Different Car manufacturer/OEM relationship
– Car manufacturer define overall system and retain know-

how
• Car manufacturer provide application
• OEM provide incomplete Electronic Control Units (ECU)
• OEM provide software components

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Cruise
Control

Read Brake
Pedal

Measure
Speed

Display
Value

Read
CC buttons

Engine
Control

Cruise Control
User Function

Display Speed User Function

System Input
Wheel Sensor System Output

Speedometer

Sub-function
Engine control

Data Flow
Vehicle Speed

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Cruise
Control

Read Brake
Pedal

Measure
Speed

Display
Value

Read
CC buttons

Engine
Control

ABS Instrument Cluster

Powertrain

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Demands on Technology and Tools

�Open systems (e.g. OSEK/VDX, AMIC)
�Advanced methods and tools (e.g. OMT, UML)
�Support for dependability in some cases (e.g. TTP)
�Hardware independence

– e.g. A provides application, B and C provide ECU
hardware

�Need for single chip approach
– 8-16-32 bits
– Small memory footprints (128 Kbytes ROM 10Kbyte

RAM).

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS

�2-year Initiative
�Consortium

– Trialog
– PSA (Peugeot-Citroën)
– Centro Riserche Fiat
– Mecel (technology centre of Delphi)
– University of Karslruhe

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS Objectives

�Specification, Development, Demonstration of
– an open technology
– based on Java
– for deeply embedded automotive control systems

� Industrial viewpoint
– Benefit from object orientation in terms of structuring,

reusability, dependability
– WORA attributes to some extent, robustness attributes
– Support the same kind of real-time constraints which non

Java based ECUs are managing today
– Single chip approach - Small footprint

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Technical Requirements

�Mechanisms and APIs must
– support existing standards in the automotive industry

(OSEK/VDX)
– support legacy C code
– support calibration mechanisms
– support distribution mechanisms

�Run-time must have right level of performance.
Native code

� Issues related to Java
– e.g. Memory management, synchronisation, interrupt, ..
– static versus dynamic

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Static VS Dynamic

�Static systems
– static predetermined configuration (e.g. task 3)

�… are easier for determinism
�… allows for small footprints
�Example of Threads

– can only be created at initialization time?
– Association between Java entity and underlying static

entity
�Example of Memory management

– is GC needed?
– immortal memory? Scoped memory?

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

OSEK/VDX

�Standard architecture for distributed control units
in vehicles

�Specifies abstract APIs
– real-time operating system OS
– communication COM
– network management NM
– system generation OIL

�Static system

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

OSEK/OS supports for

�Tasks
– Basic tasks - no waiting
– Extended tasks

�Resource
– Priority ceiling protocol
– No waiting

�Events
�Alarms and counters

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

OIL (OSEK Implementation Language)

�Entities are described in OIL (e.g. task)
�Run-time entity descriptors (e.g. task descriptor)

contains (typically)
– ROM part
– RAM part

�OIL builder generates configuration info
– e.g. constants in ROM
– e.g. initialization code ...

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Issues

�Combine OSEK/VDX execution model with Java
execution model

�Combine OIL with Java
– Entities described in OIL
– Builder generate structure

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Standardisation

�Carried out within the J consortium (www.j-
consortium.org)

�within the HIP (High Integrity Profile) working
group

�defines a specific profile, the HIPA Specification
(High Integrity Profile for Automotive applications)

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

A HIPA Compliant Implementation
�Application files
�Configuration files

– counterpart of OIL file
�… create Environment

files
�… generate class files
�… generate binary

image

Java
Source

File

HIPA
Clas s
File

Bas e line
Compiler

Trans lation
Environment

HIPA
Config

File

Binary
Image

Execution
Environment

HIPA
Env.
Files

Host machine

Target machine

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

A HIPA Compliant Implementation

�API for OSEK
– configuration API
– task management
– interrupt management
– event management
– synchronisation API

�Conformance
– run-time checking as an option
– OSEK/VDX classes of conformity

• BCC1, BCC2, ECC1, ECC2

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Native Code Approach vs Interpretation

�Standard approach : Interpretation of Byte-Code
– high-level Byte-Code pre-compiled from Java sources
– virtual machine / interpreter runs the program
– whole (virtual) state space available to

inspection/debugging
– exchangeable code pieces (dynamic class loading)

�Partial Compilation: JIT Compiler
– Parts (methods/expressions) are compiled to native code
– Compiler included in Virtual Machine

�Full Compilation: Offline Compiler
– Full native binary

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Native Code Approach vs Interpretation
� Giving up interpretation we lose:

– Dynamic overloading of classes
– Compile once, run everywhere
– Runtime verifier

� We gain:
– Improved execution speed by orders
– Better static memory layout, less garbage collection

� We keep:
– Replacement of software modules
– Inspection/Debugging interface
– Write once, compile to many platforms

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Native Code VS Interpretation

Java
Sources

Java
Byte Code

Virtual
Machine

JavaC

JIT Compiler

Offline Online

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS Native Code Approach

Java
Sources

Java
Byte Code

Native
Virtual

Machine

JavaC

C-Compiler

OfflineOnline

Native
Code-Gen

Lowering -
Transformator

Native
Code

C-
Backend

Optimizer

IPD Java Frontend

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS Native Code Approach

�Lowering Transformator
– high level Java construct transformed into low level

intermediate form
– … called SSA (Single Static Assigment)

�Optimizer
– works on intermediate form

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

Optimisation Technology

�Object orientation
– expensive polymorphic calls.
– many calls to procedures (e.g. 5 times more).
– frequent accesses to heap variables (e.g. 60% more memory

access)
– lots of heap objects allocation

�AJACS will use Explicit Dependency Graphs (EDG)
– optimization = rewriting of graph

�and BEG (Back End Generator) tool (U.Karlsruhe)
– Bottom-up-rewrite/bottom-up-pattern-match

Embedded Intelligence 2001
Nürnberg. February, 15th 2001 AJACS

AJACS time table

�Draft spec March 2001
� Implementation August 2001

