AJACS : Applying Java to Automotive
Control Systems

Authors :
Jérome Charousset, Antonio Kung. www.trialog.com
Thilo Gaul /IPD/U.Karlsruhe. i44www.info.uni-karlsruhe.de

Presented by Antonio Kung
Y

Embedded Intelligence 2001 AJACS‘

Nirnberg. February, 15th 2001

Content

& Context of Automotive Electronics
€ AJACS objectives

€& AJACS technical requirements and issues

€ J consortium HIPA specification
€ Native code approach
€ Timetable

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJAC S‘

Automotive Market

@ Increasing number of electronics

— $240 in a vehicle by 2001

— $4.9 billion for DSP, microcontrollers, microprocessors
€ Fragmented market (4 bit to 128 bits)

— 8-16-32 bits for control
— 32 bits+ for infotainment

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

Two Worlds

€ Infotainment (Navigation, Internet, Telecom).
— e.g. AMIC initiative (www.ami-c.com) on Java-based

technology

® Control bus (powertrain, ABS, engine control ...)
— e.g. OSEK/VDX initiative (www.osek-vdx.org) on RTOS

and multiplexing

— e.g. LIN Local Interconnect Network announcement

* Audi, BMW, DaimlerChrysler, Volvo, VW)

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

I

AJACS

\

Automotive Industry

€ More global functions
— Multiplexing (CAN)
— Interconnectivity with vehicles

@ Different Car manufacturer/OEM relationship
— Car manufacturer define overall system and retain know-
how
« Car manufacturer provide application
« OEM provide incomplete Electronic Control Units (ECU)

 OEM provide software components
Vo’

Embedded Intelligence 2001 AJACS‘

Nirnberg. February, 15th 2001

System Input

Pedal

Wheel Sensor System Output
/ \‘ N Speedomet{r
N\ — \
\ Measure Display
Speed \ Display Speed User Function Value
~ NG
\ ~
Read Brake Read
Cruise Control CC buttons

User Function

Cruise Engine
Control Control

Data Flow
Vehicle Speed

Sub-function
Engine control

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

ABS Instrument Cluster

Measure

Read Brake
Pedal

e
a 1 —
Cruise - Engine .
Control Control
Powertrain

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

Demands on Technology and Tools

€ Open systems (e.g. OSEK/VDX, AMIC)
€ Advanced methods and tools (e.g. OMT, UML)
@ Support for dependability in some cases (e.g. TTP)

€ Hardware independence
— e.g. A provides application, B and C provide ECU
hardware
@ Need for single chip approach
— 8-16-32 bits
— Small memory footprints (128 Kbytes ROM 10Kbyte

RAM).

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

AJACS

@ 2-year Initiative

€ Consortium
— Trialog
— PSA (Peugeot-Citroen)
— Centro Riserche Fiat
— Mecel (technology centre of Delphi)
— University of Karslruhe

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJAC S‘

AJACS Objectives

@ Specification, Development, Demonstration of
— an open technology
— based on Java
— for deeply embedded automotive control systems

@ Industrial viewpoint

— Benefit from object orientation in terms of structuring,
reusability, dependability

— WORA attributes to some extent, robustness attributes
— Support the same kind of real-time constraints which non

Java based ECUs are managing today

— Single chip approach - Small footprint
Embedded Intelligence 2001 AJACS‘

Nirnberg. February, 15th 2001

Technical Requirements

® Mechanisms and APIs must

— support existing standards in the automotive industry
(OSEK/VDX)

— support legacy C code
— support calibration mechanisms
— support distribution mechanisms

€ Run-time must have right level of performance.
Native code

@ Issues related to Java
— e.g. Memory management, synchronisation, interrupt, ..

— static versus dynamic r

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

Static VS Dynamic

Static systems

— static predetermined configuration (e.g. task 3)
@ ... are easier for determinism
¢ ... allows for small footprints
€ Example of Threads

— can only be created at initialization time?
— Association between Java entity and underlying static
entity
€ Example of Memory management
— is GC needed?

— immortal memory? Scoped memory?

I

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

OSEK/VDX

€ Standard architecture for distributed control units
in vehicles

® Specifies abstract APIs

— real-time operating system OS
— communication COM
— network management NM
— system generation OIL
€ Static system
e e, oo Asacs

OSEK/OS supports for

& Tasks

— Basic tasks - no waiting
— Extended tasks

€ Resource
— Priority ceiling protocol
— No waiting

& Events
& Alarms and counters

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJAC S‘

OIL (OSEK Implementation Language)

@ Entities are described in OIL (e.g. task)

€ Run-time entity descriptors (e.g. task descriptor)
contains (typically)
— ROM part
— RAM part

® OIL builder generates configuration info
— e.g. constants in ROM
— e.g. initialization code ...

I

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

Issues

€ Combine OSEK/VDX execution model with Java

execution model

€ Combine OIL with Java
— Entities described in OIL
— Builder generate structure

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJAC S‘

Standardisation

Carried out within the J consortium (www.j-
consortium.org)

€ within the HIP (High Integrity Profile) working
group

® defines a specific profile, the HIPA Specification
(High Integrity Profile for Automotive applications)

I

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

A HIPA Compliant Implementation

Java
Source
File

v

Baseline
{ Compiler J »

T

HIPA
Config
File
HIPA
Class
File
v oV

HIPA
Env. ‘
Files

Environment

Trans lation J

Host machine

v

Binary

Target machine

Image

v

(

N

Execution 1

Environment J

@ Application files

® Configuration files
— counterpart of OIL file

@ ... create Environment
files

® ... generate class files

¢ ... generate binary
image

__Embedded Intelligence 2001

Nirnberg. February, 15th 2001

Y

AJAC S‘

A HIPA Compliant Implementation

& API for OSEK

— configuration API

— task management

— interrupt management
— event management

— synchronisation API

¥ Conformance

— run-time checking as an option

— OSEK/VDX classes of conformity
- BCC1,BCC2, ECC1, ECC2

Embedded Intelligence 2001 AJACS‘

Nirnberg. February, 15th 2001

Native Code Approach vs Interpretation

€ Standard approach : Interpretation of Byte-Code
— high-level Byte-Code pre-compiled from Java sources
— virtual machine / interpreter runs the program

— whole (virtual) state space available to
inspection/debugging

— exchangeable code pieces (dynamic class loading)

® Partial Compilation: JIT Compiler

— Parts (methods/expressions) are compiled to native code

— Compiler included in Virtual Machine

€ Full Compilation: Offline Compiler
Embedded Intelligence 2001 AJACS‘

— Full native binary
Nirnberg. February, 15th 2001

Native Code Approach vs Interpretation

€ Giving up interpretation we lose:
— Dynamic overloading of classes
— Compile once, run everywhere
— Runtime verifier
€ We gain:
— Improved execution speed by orders
— Better static memory layout, less garbage collection

€ We keep:
— Replacement of software modules
— Inspection/Debugging interface
— Write once, compile to many platforms

I

Embedded Intelligence 2001 AJACS‘

Nirnberg. February, 15th 2001

Native Code VS Interpretation

Offline Online

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJACS Native Code Approach

Online Offline

o o}
it

Embedded Intelligence 2001
Nirnberg. February, 15th 2001

AJACS Native Code Approach

€ Lowering Transformator

— high level Java construct transformed into low level
intermediate form

— ... called SSA (Single Static Assigment)
€ Optimizer

— works on intermediate form

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

Optimisation Technology

€ Object orientation
— expensive polymorphic calls.
— many calls to procedures (e.g. 5 times more).

— frequent accesses to heap variables (e.g. 60% more memory
access)

— lots of heap objects allocation

¢ AJACS will use Explicit Dependency Graphs (EDG)

— optimization = rewriting of graph

€ and BEG (Back End Generator) tool (U.Karlsruhe)

— Bottom-up-rewrite/bottom-up-pattern-matc

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

AJACS time table

@ Draft spec March 2001
€ Implementation August 2001

Embedded Intelligence 2001 ‘
Nurnberg. February, 15th 2001 AJACS

